Operation Cycles of DMAC

There are mainly two operation cycles of a DMAC.

- i. Idle Cycle

 - After Reset, the DMAC is in idle state (idle cycle).

 During idle state, no DMA operation is taking place.
- No DMA requests are active.
- The initialization of the DMAC takes place in the idle mode.
- II. Active Cycle
 - Once DMA operation begins, the DMAC is said to be in active mode.
- Now the DMAC controls the system bus.
- There are three types of ACTIVE DMA Cycles while performing DMA transfer:

 - The DMAC reads data from the memory and writes into to the I/O device.
 - Thus, MEMR and IOW signals are used.
 - 2) DMA Write
 - The DMAC reads data from the I/O device and writes into to the memory.
 - Thus, IOR and MEMW signals are used.

 - DMA Verify
 In this cycle, 8237 does not generate any control signals.
 - Hence, no data transfer takes place.
 - During this time, the peripheral and the DMAC verify the correctness of the data transferred, using some error detection method.

Transfer Modes of 8237

8237 has four modes of data transfer:

1)Single Transfer Mode,

- In this mode, the DMAC is programmed to transfer ONLY ONE BYTE in one complete DMA. openation.
- After a byte is transferred, the CAR and CWCR are adjusted accordingly.
- The system bus is returned to the µP.
- For further bytes to be transferred, the DREQ line must go active again, and then the entire operation is repeated.

2) Block Transfer Mode.

- In this mode, the DMAC is programmed to transfer ALL THE SYTES in one complete DMA
- After a byte is transferred, the CAR and CWCR are adjusted accordingly.
- The system bus is returned to the uP, ONLY after all the bytes are transferred.
- Le. TC is reached or EDP signal is issued.
- The DREQ signal needs to be active only in the beginning for requesting the DMA service Initially.
- Thereafter DREQ can become low during the transfer.

3) Demand Transfer Mode.

- It is very similar to Block Transfer, except that the DREQ must active throughout the DMA operation.
- If during the operation DREQ goes low, the DMA operation is stopped and the busses are returned to the µP.
- In the meantime, the µP can continue with its own operations.
- Once DREQ goes high again, the DMA operation continues from where it had stopped.

4) Cascade Transfer Mode.

- In this mode, more than one DMACs are cascaded together.
- It is used to increase the number of devices interfaced to the μP . Here we have one Master DMAC, to which one or more Sleve DMACs are connected.
- The Slave gives HRQ to the Master on the DREQ of the Master, and the Master gives HRQ to the uP on the HOLD of the uP.

Priority Methods of 8237

8237 has two priority methods:

1) Fixed Priority.

- This is the default mode of 8237.
- Here the priorities of the channels are fixed.
- Channel 0 has the highest priority, followed by Channel 1, Channel 2 and finally Channel 3 having the lowest priority.

2) Rotating Priority.

- It is a flexible priority mode.
- In this mode, the Channel, which was most recently serviced, receives the lowest priority.
- This prevents any one Channel from dominating the system.